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Abstract
1

Foot-and-mouth disease (FMD) is a highly infectious illness of livestock and a serious2

economic threat. We modelled the 2001 FMD epidemic in Uruguay using an explicit dis-3

crete spatial epidemic model (comprising a series of coupled differential equations) that4

includes geo-referenced data (i.e., Euclidean distances between farms, as estimated in re-5

lation to distances between county centroids). The value of spatially explicit models in the6

development and testing of FMD control measures was tested using the corresponding spa-7

tially homogeneous model as basis for comparison. We estimated model parameters using8

least-squares fitting techniques and assessed parameter uncertainty using the stochastic9

temporal dependence of the cumulative number of outbreaks. The limitations of spatially10

homogeneous models were illustrated by their inability to capture observed patterns of11

spread effectively. For the situation of Uruguay, our discrete spatial model captured a12

double peak in the epidemic, a pattern not observed under the spatially homogeneous13

model. We defined internal (within counties) and external (across counties) reproductive14

numbers, that is, within-and across-county contributions to the average number of sec-15

ondary infections. Following movement restrictions, the mean internal R̄in ≈ 87, while16

the external R̄out ≈ 0.82. Twelve days after the start of the mass vaccination policy, the17

internal reproductive number dropped to less than one. We explored the expected impact18

of how quickly movement restrictions are implemented after the start of an outbreak. Our19

model predicts that, if the movement restrictions had been delayed an additional three20

days, there would have been 26% more outbreaks. If the movement restrictions had been21

implemented 3 days prior to the actual date, our model predicts the epidemic would have22
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been reduced by 23%.1

Keywords: Foot-and-mouth Disease; spatial mathematical model; reproductive number; Uruguay;2

movement restrictions; mass vaccination.3

1 Introduction4

Foot-and-mouth disease (FMD) is a highly infectious illness caused by an aphthovirus that af-5

fects cloven-hoofed animals such as pigs, cattle, and sheep. Infected animals shed large amounts6

of the virus through the mouth and nose (Sutmoller et al., 2003). The virus can survive in7

objects such as shoes, clothes, or vehicle tires. The wind can carry the virus long distances8

(Gloster et al., 2003; Sutmoller et al., 2003). Recurrent FMD outbreaks have occurred in sev-9

eral regions of the world. In South America, FMD was first recorded in Argentina, Uruguay,10

and Brazil around 1870 as a result of the introduction of cattle from Europe during the early11

colonization days (Saraiva, 2004). South America has reported recurring outbreaks of FMD,12

albeit the number of clinical FMD cases in that region has decreased considerably since the13

signing of the Hemispheric Plan for the Eradication of Foot-and-Mouth Disease (PHEFA) in14

1987 (Correa Melo et al., 2002).15

16

The likelihood that FMD will start an epidemic outbreak depends on various factors that17

include the susceptibility of the livestock, the potential modes of transmission, and the effec-18

tiveness of public health control and intervention efforts. Control and intervention efforts have19

been based, since 1911, on the concept of the basic reproductive number introduced precisely20

for these purposes by Sir Ronald Ross (Ross 1911) and his “pupils” Kermack and Mckendrick21
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(Kermack and Mckendrick, 1927). The basic reproductive number, R0, is defined as the number1

of secondary cases generated by a primary case when the virus is introduced in a population of2

fully susceptible individuals at a demographic steady state (Diekmann and Heesterbeek, 2000).3

That is, R0 measures the power of a disease to invade a population under conditions that facil-4

itate maximal growth. Once an outbreak starts, the number of susceptible livestock decreases5

either through loss of susceptibles (i.e., they get infected) or from the implementation of control6

measures such as slaughter or vaccination that effectively reduce the force of infection. The7

number of secondary infections once the initial epidemic phase has begun becomes a dynamic8

process. That is, after the initial phase, it tends to decrease. Here, we will denote the effective9

reproductive number at time t as R(t) and assume that R(0) = R0. There is no “clean” way10

of characterizing R(t) and this theoretical issue is not resolved here. However, we make use of11

this concept as it illuminates the discussion since the objective of disease contingency plans are12

to make R(t) < 1. The timeliness and effectiveness of the response effort is critical in the case13

of FMD (Rivas et al., 2003a).14

15

The transmission dynamics of FMD involve immunological, epidemiological, geographical,16

and sociological factors. The detailed role of some immunological and epidemiological factors17

has been relatively well studied. For example, it has been recently shown experimentally (in18

pigs and cattle) that the rate of spread, the incubation period, and disease severity depend19

on the dose received, the route of introduction, the animal species, and husbandry conditions20

(Alexandersen et al., 2003). The average incubation period for FMD has been reported to be21

3-6 days with a maximum of 14 days (Hugh-Jones and Wright, 1970; Hugh-Jones and Tinline,22
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1976; Sellers and Forman, 1973). A recent experimental study in cattle reports the presence of1

viral RNA (mouth and nasal swabs) in all infected cattle within 24 h post infection with peak2

levels 1-2.5 days after infection. In some animals viral RNA was not detected until 7-18 days3

post infection (Zhang et al., 2004). Latent animals progress to an infectious state that lasts for4

about 8 days. They are typically asymptomatic during the first 5 days of the infectious period5

(Keeling et al., 2001) and then asymptomatic and infectious (Zhang et al., 2004). Hence, there6

is a small window (3-5 days) to detect and remove or isolate the infected animals from the rest.7

Animals that recover do so but with reduced weight and a diminished productivity (Ferguson8

et al., 2001) .9

10

The transmission dynamics of FMD is tied in to geographical and sociological factors that11

are difficult to separate and/or quantify. FMD transmission between adjacent farms has been12

documented (Keeling et al., 2001; Ferguson et al., 2001; Kao, 2002). Long distance transmission13

through routes that include daily milk collection routes, cattle transportation, animal move-14

ment, or cattle rellocation, etc. are not only possible but extremely likely (Sellers et al., 1971;15

Anon, 1969). No models that include explicit transmission mechanisms (cause and effect), that16

is, deterministic models, have been able to incorporate all possible transmission routes effec-17

tively. There have been some valiant efforts for the case of human influenza (Elveback et al.,18

1964) and recently for FMD (Bates et al. 2003). The agent-based model known as EpiSims19

(Eubank et al. 2004) provides an example of the cost and magnitude of validating a detailed20

model. Cerrtainly, we have gained some understanding from the outcomes of semi-deterministic21

models like EpiSims (Eubank et al. 2003) but challenges remain (Chowell et al. 2003). Simple22
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deterministic models can often yield useful insights, generate intriguing hypotheses, and guide1

future research (Anderson and May, 1991) and their analyses can be used quite roughly to2

evaluate the validity of control and intervention measures. Models that incorporate the im-3

munological, epidemiological, sociological, and geographical dependent factors just described4

in the context of FMD would be extremely complex. Their validation would require knowledge5

of a large number of parameters, their distributions, and large amounts of data. The infor-6

mation required would include knowledge of the rates of movements of key individuals, human7

and animal traffic between farms, lags in reporting, impact of holidays, highly heterogeneous8

contact structures (between susceptible hosts, “vectors”, and infected hosts), geography as well9

as immunological (variability in susceptibility) and epidemiological factors (variable latent and10

incubation period distributions) factors. Prior work (Rivas et al. 2003a; 2003b) provides rough11

quantitative estimates of the importance of geographical factors on the rate of FMD spread. It12

was shown that intervention response times of farms depended strongly on the spatial (regions)13

distribution of farms, a dependence used to develop a data-base simulation of the 2001 FMD14

epidemic in Uruguay (supplementary materials).15

16

1.1 FMD Britain versus Uruguay17

The cost of FMD epidemics can be high. More than four million animals were destroyed during18

the 2001 FMD epidemic in Great Britain (Enserink, 2001) and the exportation of animal goods19

cancelled for roughly a year. During the 2001 FMD epidemic in Great Britain, two teams of20

researchers developed highly refined models to aid in the decision-making process (Keeling et21
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al., 2001; Ferguson et al., 2001) and concluded that massive culling was the best strategy to1

control the ongoing FMD epidemic. Their conclusions relied on models that incorporated data2

on the location of farms, farm animal density, and measures of animal heterogeneity within3

farms. Longitudinal data on the number of farms infected and the culling process were avail-4

able (Enserink, 2001).5

6

The first outbreak of the 2001 FMD epidemic in Uruguay was reported in the state of So-7

riano, close to the border with Argentina, on April 23 (Irvine, 2004; reports of the European8

Commission). The epidemic spread through regions where it had not previously existed (exotic9

disease) and geo-referenced data was collected. In just a few days, FMD spread throughout10

the entire country. The epidemic reached its peak incidence (66 new outbreaks) on May 25,11

with a total of 1762 reported infected farms by July 10, 2001 (Figure 1). Animal slaughter12

took place from April 25 to April 29 (total: 5,295 cattle, 1.481 sheep, 332 pigs) while animal13

movement restrictions were enforced by the police and the army as of April 27, four days after14

the first reported outbreak. People movement was never banned (farm personnel continued to15

come in and out during the roadblock period). An awareness campaign to farmers through16

press releases and personal visits by veterinarians to farms was implemented. Export controls17

were implemented at borders, airports, and harbors (reports of the European Commission).18

Mass vaccination (60-70% expected efficacy) started on May 5 with May 28 as the expected19

completion date. No high potency vaccines (where protective immunity is reached within 3-420

days (Doel, 2003)) were used. Hence, peak protective levels of the serum antibodies from vac-21

cination were expected to take 14-28 days. The vaccination programme did not include calves22
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younger than 3 months, pigs, or goats. Vaccines were delivered to county/district veterinarians1

who provided them to farmers who administered them to their farm herds. The second round2

of mass vaccination (booster vaccination with expected 100% efficacy) started on June 15 and3

was completed on July 22. The estimated cost of controlling the epidemic was 13.6 million US$4

of which 7.5 million were spent on vaccine purchase (Sutmoller et al., 2003).5

6

1.2 Modelling approach7

We modelled the epidemic using a discrete spatial deterministic epidemic model that includes8

geo-referenced data (i.e., euclidean distances between farms, as estimated in relation to distances9

between county centroids). We assessed the ability of this spatially explicit model, where space10

serves as a proxy for factors that have not been measured, to capture the transmission dy-11

namic patterns of the FMD epidemic in Uruguay. Epidemiological and control parameters are12

estimated using least-squares fitting. Internal (within counties) and external (across counties)13

reproductive numbers before and after interventions were implemented, are computed. The14

impact of time delays on the implementation of movement restrictions was explored (Castillo-15

Chavez et al., 2003). A spatially homogeneous model is also used to contrast the limitations of16

their qualitative predictions in the context of FMD in Uruguay.17

18
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2 Modelling framework1

An explicit discrete spatial deterministic model that incorporates specific interventions is in-2

troduced. The number of secondary outbreaks generated by a primary outbreak during its3

entire period of infectiousness are classified as internal (within counties) and external (across4

counties). Interventions in the 2001 FMD epidemic were implemented after the initial outbreak.5

Hence, control parameters are modelled as simple functions of time. Parameter values are esti-6

mated from data using least-squares fitting techniques. Standard deviations for the estimated7

parameters are also provided.8

9

2.1 Spatial epidemic model10

The epidemiological unit is the farm. Farms are classified as susceptible (S), latent (L), infec-11

tious and undetected (I), and detected and removed (J). Farms are aggregated at the level of12

counties (Table 1). A susceptible farm in county i that is in contact with the virus enters the13

latent (uninfectious and asymptomatic) class (L) at the rate
∑n

j=1 βijIj. In other words, the14

rate of infection is assumed to be proportional to the sum of the weighted prevalences of infected15

farms from all counties j. Hence, the transmission parameters βij measure the impact on county16

i from direct and indirect “contacts” between i−county and the j−county. These “contacts”17

may be the result of animal rellocation or movement, from the sharing of milk routes (drivers as18

“mechanical” vectors or carriers), shared veterinarians or overlapping visitors (buyers, salesmen19

of farm products, etc. Sutmoller et al., 2003; Sellers et al., 1971). Far away farms are assumed20

to be less likely to share the same veterinarians or milk trucks or visitors. Having no reliable21
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information on the county specific frequency of movement of potential “carriers.” It is assumed1

that the rate of transmission βij between farms in counties i and j decays exponentially fast2

with the Euclidean distance of their respective county centroids. The elements of the “mixing”3

or “contact” matrix βij (Anderson and May, 1991) are therefore expressed as:4

5

βij = β(t) e−qdi,j , (1)6

where β(t) denotes the average transmission rate of infectious farms within each county at time7

t, dij is the distance between the centroids of counties i and j (Figure 2); and the parameter q8

(1/km) which quantifies the extent of average local spread (1/q can also be interpreted as the9

FMD mean transmission range). Small values of q lead to widespread influence, whereas large10

values of q support the hypothesis that local spread is the key. For simplicity, uniform mixing11

within each county is assumed, that is, dii = 0. It is also assumed that latently infected farms12

“progress” towards the infectious class after a mean time of 1/k days and that infectious farms13

are detected and isolated from other farms at the per-capita rate α. That is, α is the average14

time required to detect and isolate an infected farm.15

16

The above definitions and assumptions lead to the following FMD model:17

18










































Ṡi = −Si

∑n

j=1 βijIj

L̇i = Si

∑n

j=1 βijIj − kLi

İi = kLi − αIi

J̇i = αIi.

(2)

19
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The dot denotes time derivatives while Si, Li, Ii, and Ji denote the number of susceptible,1

latent, infectious, and removed/isolated farms in county i (i = 1, 2, ..., n). The distribution2

of the number of farms per county is given in Table 1. The above system falls within the3

class of metapopulation models that have been used extensively to study ecological processes in4

heterogeneous patchy environments. In fact, the spatially dependent transmission rates {βij}5

correspond to the metapopulation patch connectivity index (Hanski, 1998) once we re-interpret6

dij as a measure of the influence of the landscape on migration (Moilane and Hanski, 1998).7

The elements of {dij} here are set of as “indices” that capture the effects of local transmission8

factors such as wind direction and animal heterogeneity within farms (dairy, beef, etc.). Here,9

the county connectivity dij is approximated by the distance between counties. The incorporation10

of a few time-dependent control/interventions measures leads to the following modified model11

(see compartment diagram in Figure 3) :12




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
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

















































Ṡi = −Si(t)
∑n

j=1 βij(t)Ij(t) − ν(t)Si(t)

V̇i = ν(t)Si(t) − Vi(t)
∑n

j=1 βij(t)Ij(t) − µ(t)Vi(t)

L̇i = (Si(t) + Vi(t))
∑n

j=1 βij(t)Ij(t) − k(t)Li(t)

İi = k(t)Li(t) − α(t)Ii(t)

J̇i = α(t)Ii(t)

Ṗi = µ(t)Vi(t)

(3)

13

where the classes Si, Li, Ii and Ji are defined as before. Susceptible farms in county i (Si)14

are vaccinated at rate ν (Vi); vaccinated farms in Vi enter the protected class Pi at rate µ;15

vaccinated farms in county i that have not yet reached protective levels (class P ) enter the16

latent (uninfectious and asymptomatic) class (L) at the rate
∑n

j=1 βijIj. The total cumulative17

number of reported infected farms as a function of time is given by C(t) =
∑n

i=1 Ji(t) while the18
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daily number of new reported infected farms is given by ˙C(t), that is by α(t)
∑n

i=1 Ii(t).1

2

The dependence of parameters β(t), α(t), ν(t), and µ(t) on time allow for the possibility of3

implementing control measures at different times (Chowell et al., 2004). For simplicity, these4

parameters are modelled as simple step functions5

6

7

β(t) =











β0 t < τm

β t ≥ τm

(4)

8

9

α(t) =











α0 t < τv

α t ≥ τv

(5)

10

11

ν(t) =











0 t < τv

ν t ≥ τv

(6)

12

13

µ(t) =











0 t < τv

µ t ≥ τv

(7)

14

where τm = 5 (27 April 2001) is the time when movement restrictions were put in place and15

τv = 13 (05 May 2001) is the time when mass vaccination was started.16

17

2.1.1 The reproductive number18

Government movement restrictions (the first intervention implemented) were put in place rela-19

tively quickly. Hence, there was not sufficient data to estimate the basic reproductive number20
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(R0). We defined the internal reproductive number of county i, Rin
i , as the number of sec-1

ondary outbreaks generated by an outbreak in county i within the same county after t > 4,2

Rin
i = βNi/α where Ni denotes the number of farms in county i and 1/α is the average time it3

takes to identify infected farms. The external (across counties) reproductive number of county4

i, Rout
i , is defined as the number of secondary outbreaks generated by an outbreak in county5

i in other counties, where j = 1, 2, ..., n; j 6= i. Rout
i =

∑n

j 6=i βNj e−qdij/α, that is, it is given6

by the additive contributions of the number of secondary cases (after the first intervention) in7

county i. Hence, the contributions must be weighted by distance.8

9

Mass vaccination defined the second type of interventions. An expression for a time-10

dependent reproductive number that considers the impact of mass vaccination (loss of suscep-11

tibles) is defined as a function of the effective time T elapsed from the start of mass vaccination12

(time tv) to the current time t. That is, if T = t− tv − 1/µ, where 1/µ denotes the mean time13

required for a vaccinated farm to reach protective antibody levels. The internal and external14

post-vaccination time-dependent reproductive numbers are modelled as R(T )in
i = (βNi/α) s∗i15

and R(T )out
i = (

∑n

j 6=i βNj e−qdij s∗j/α) (i =1, 2, ..., n) with16

s∗i =











0 Ni ≤ Tν

1 − Tν/Ni Ni > Tν

(8)

17

Here, we have modelled or defined various reproductive numbers motivated by the “stan-18

dard” versions (Anderson and May, 1991; Brauer and Castillo-Chavez, 2000). Here, they are19

seen as reasonable “heuristic” versions that incorporate in sensible ways available information.20

As noted before, a theory that characterizes a time-dependent reproductive number is still21
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lacking.1

2.2 Spatially homogeneous case2

In order to assess the role of spatial heterogeneity, a description of the corresponding spatially3

homogeneous version (null-model) follows. We set the homogeneous mixing assumption, βij =4

ˆβ(t) where5

ˆβ(t) =











β̂0 t < τm

β̂ t ≥ τm

(9)

6

The corresponding system of nonlinear ordinary differential equations for the spatially homo-7

geneous model becomes8

9










































































Ṡ(t) = − ˆβ(t)S(t)I(t)/N − ν̂S

V̇ (t) = ν̂S − ˆβ(t)V (t)I(t)/N − µ̂V

L̇(t) = ˆβ(t)(S(t) + V (t))I(t)/N − k̂L(t)

İ(t) = k̂L(t) − α̂I(t)

J̇(t) = α̂I(t)

Ṗ (t) = µ̂V (t)

(10)

10

where S, V , L, I, J , and P denote the total number of susceptible, vaccinated, latent, infec-11

tious, removed/isolated, and protected farms, respectively. The parameters ˆα(t), ˆν(t), and ˆµ(t)12

depend on time in the same manner as in the spatially explicit model.13

14
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3 Model implementation1

The epidemic-curve data on the number of outbreaks reported over time identified by coun-2

ties were obtained from geo-referenced outbreak reports. Intercounty distances (i.e., Euclidean3

distances between farms, as estimated in relation to distances between county centroids) were4

used as a measure of the connectivity between counties. Epidemiological and control parame-5

ters were estimated from the cumulative number of infected farms by a least-squares fit.6

7

The 19 Uruguayan states are grouped into three contiguous regions (Regions I, II and III)8

(Figure 4b). They experienced significantly different prevalences (Rivas et al. 2003a). Most9

cases accumulated in Region I where the epidemic started. Fewer cases occurred in the sur-10

rounding Region II, and the least number of cases were reported in Region III (Rivas et al.11

2003a). Table 1 shows the distribution of the number of counties per state and the mean den-12

sity of farms per county in each Uruguayan state. Figure 2 shows the distribution of all the13

intercounty distances. Using geo-referenced outbreak reports obtained from public records of14

the Uruguayan Ministry of Livestock, Agriculture, and Fisheries (MGAP), the Pan-american15

Health Organization, and the World Organization for Animal Health (OIE) were used to con-16

struct a table of the number of daily new reported infected farms during the first 79 days of17

the epidemic. That is, a table of the form (ti,xi), i = 1, ..., 1762, where ti denotes the time and18

xi the location of the ith reported infected farm was constructed from the data. Hence, each19

infected farm was associated geographically with a region, state, and county. Table 1 shows20

that the focus of the epidemic was in Region I where the epidemic started (1003 outbreaks21

(57%)). This region includes the states of Soriano, with 463 outbreaks (26%); Colonia, with22

15



362 (21%); and Rio Negro, with 178 (10%).1

2

3.1 Parameter estimation3

As in the demographic literature, the intrinsic growth rate was defined as the number of out-4

breaks per day. The initial region-specific intrinsic growth rates ri (i =1,2,3) were estimated5

under the assumption of exponential growth. That is, r (with units of 1/day) was estimated6

by assuming that the cumulative number of reported farms was proportional to exp(rt), where7

t is the time (in days). Solving for r, we obtained r = (ln(y(t)) − ln(y0))/t, where ln denotes8

natural logarithm and y0 is the number of outbreaks reported the during the first reporting9

day. The intrinsic growth rate in Region III was estimated using the cumulative number of10

outbreaks from May 02 to May 07, 2001. This window of time was chosen because of a pattern11

of significant underreporting prior to May 02.12

13

The model parameters Θ =(β(t), k(t), α(t), q(t), ν(t), µ(t)) and the initial number of14

exposed and infectious farms (E(0) and I(0)) were estimated from the cumulative number of15

reported farms (ti, yi), where ti denotes the ith reporting time (79 reporting days) and yi is16

the cumulative number of reported farms by least-squares fitting to C(t,Θ) (the cumulative17

number of reported farms for our ODE model with interventions (3)) in Region I (where the18

outbreak started and the majority of outbreaks occurred). This gives a system of 5 (equations19

per county) * 42 (counties in Region I) = 210 differential equations. The farm density of each20

county is provided in Table 1. MATLAB (The MathWorks, Inc.) was used to carry out the21
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least-squares fitting procedure. Initial conditions were chosen within the appropriate ranges1

(0 < β < 100, 1/5 < k < 1/3, 1/12 < α < 1/4, 0 < q < 10, 0 < ν < 10, 0 < µ < 10). Pa-2

rameter optimization was carried out using the Levenberg-Marquardt method with line-search3

(More, 1977). This method is implemented in the built-in routine lsqcurvefit.m in MAT-4

LAB (The MathWorks, Inc.). The cumulative number of reported farms J(t) under a spatially5

homogeneous mixing ODE model (10) was also fitted to data using also the same procedure6

described above.7

8

The asymptotic variance-covariance AV(Θ̂) of the least-squares estimate for the spatially9

explicit Model (3) was computed using a Brownian bridge error structure to model the stochastic10

temporal dependence of the cumulative number of outbreaks. The explicit formula used is11

AV(Θ̂) = σ2 B(Θ0) ∇ΘC(Θ0)
T

G ∇ΘC(Θ0) B(Θ0), (11)12

where B(Θ0) = [∇ΘC(Θ0)
T ∇ΘC(Θ0)]

−1.13

14

An estimate of AV(Θ̂) is15

16

σ̂2 B̂(Θ̂) ∇ΘĈ(Θ̂)
T

G ∇ΘĈ(Θ̂) B̂(Θ̂), (12)17

where B̂(Θ̂) = [∇ΘĈ(Θ̂)
T

∇ΘĈ(Θ̂)]−1, σ̂2 =
∑

(yi − C(ti, Θ̂))2/(I1xn G Inx1) and ∇ΘĈ18

are numerical derivatives of C(Θ̂). The error structure (Davidian and Giltinan, 1995) was also19

modelled by a Brownian bridge (G) in order to account for the stochastic temporal dependence20

of the cumulative number of outbreaks. Here G is an n x n matrix with entries Gi,j = (1/n)21

min(i, j)−(ij)/n2 where n is the total number of observations. G captures the higher variability22

17



in the cumulative number of outbreaks observed on the middle course of the epidemic as well1

as the smaller variability observed at the beginning and the end of the epidemic. Confidence2

intervals of 95% were computed using the asymptotic variance of our parameter estimates (di-3

agonal elements of AV(Θ̂)). The asymptotic variance-covariance AV(Θ̂0) for the nonspatial4

(homogeneous mixing) model can be similarly computed using J(t) in model (10) instead of5

C(t).6

7

The improvement in goodness of fit provided by the spatial model compared to the non-8

spatial model was statistically assessed using the stepwise F test (Jacquez, 1996). In fact, if9

RSSspatial denotes the residual sum of squares from the spatial model and RSSnonspatial the10

corresponding sum of squares from the non-spatial (homogeneous mixing) model then11

RSSspatial =
n=79
∑

i=1

(yi − C(ti, Θ̂))2 (13)
12

13

RSSnonspatial =

n=79
∑

i=1

((yi − J(ti, Θ̂0))
2 (14)

14

The F test is the ratio of the decrease in the residual sum of squares, divided by the decrease15

in degrees of freedom (pspatial − pnonspatial), all divided by the mean residual sum of squares16

obtained from the spatial model (RSSspatial/(n − pspatial)). That is,17

(RSSnonspatial − RSSspatial)/(pspatial − pnonspatial)

(RSSspatial/(n − pspatial))
∼ F(pspatial−pnonspatial),(n−pspatial) (15)

18

where pspatial − pnonspatial = 1 (the spatial model has only one additional parameter (parameter19

q) than the nonspatial model). When the above ratio is greater than the corresponding value20

of the F distribution for the significance level chosen then we would conclude that the spatial21

18



model significantly decreases the residual variance (Jacquez, 1996).1

4 Results2

Three epidemic regions could be differentiated based on the percentage of all cases occurring3

in each region ((Figure 4b). The initial intrinsic growth rate r (assuming initial exponential4

growth rate y ∝ ert) was 0.65, 0.35, and 0.19 for Regions I, II, and III, respectively (Figure5

4 b). These growth rates decayed as awareness of the epidemic increased and as the level of6

movement restrictions (the epidemic started to spread from Region I onwards ) became more7

established. After May 07, the average rate of growth became about the same in all three8

regions (see Figure 4a). In order to reduce model complexity, we focused on the analysis of the9

incidence data from the epidemic Region I where the majority of outbreaks occurred (57% of10

total outbreaks).11

12

The nonspatial epidemic Model (10) when fitted to the cumulative number of infected farms13

showed a systematic deviation from epidemic data during the first 20 days (Figure 5a). Model14

parameter estimates used are in Table 2. Fitting the cumulative number of reported farms in15

Region I to the spatially explicit model with interventions (3) gives better agreement to data16

(Figure 5b). Furthermore, parameter estimates (from best fit) are in agreement with FMD17

epidemiology (see Table 3). The spatial model fit is also statistically significant (F test; P-18

value < 0.01). A comparison between the daily incidence obtained from the nonspatial and the19

spatial model is given in Figure 6.20

21

19



The “free course” of the epidemic included approximately the first 5 days, after which1

movement restrictions were rapidly enforced by the police and the army. Hence, parameter2

estimates of the transmission rate and the infectious period during the initial “free” growth3

of the epidemic were somewhat uncertain. The estimate for the transmission rate β0 before4

movement restrictions was 0.33 (SD 0.13) per farm per day while we computed an estimate of5

β = 0.10 (SD 0.03) per farm per day after movement restrictions were put in place. The rates6

of identification and isolation of infected farms before and after movement restrictions were7

put in place are α0 = 0.14 (SD 0.02) and α = 0.14 (SD 0.02), respectively. These values are8

consistent with each other.9

10

As noted before, unfortunately, there is not enough data to generate useful estimates of11

the basic reproductive number, since movement restrictions were implemented just a few days12

after the first reported outbreak. However, it was possible to estimate internal and external13

reproductive numbers of R̄in ≈ 87.20 and R̄out ≈ 0.82. The model predicts that the internal14

reproductive number would rapidly (in approximately 12 days after mass vaccination) decrease15

to a number less than one (epidemic day 25, or May 16).16

17

The estimate of the vaccination rate of susceptible farms ν turned out to be 0.25 (SD 0.09)18

per day. That is, a mean time of approximately 4 days was required before a susceptible farm19

was successfully vaccinated. Vaccination does not provide instantaneous protection against20

FMD. Our estimate for the rate at which vaccinated farms reach protective antibody levels µ21

is 0.14 (SD 0.03) per day. That is, 7.14 days are required on the average before successfully22

20



vaccinated farms become protected. The estimate for q is 1.03 1/km (SD 0.10). That is, the1

average transmission range (1/q) is approximately 0.97 km.2

3

A 3-day delay in the implementation of movement restrictions with respect to the actual4

implementation date yields 1262 infected farms (26% increase in the final epidemic size). If the5

movement restrictions had been implemented 3 days prior to the actual date, the model would6

then yield 775 infected farms (a 23% decrease from the actual epidemic size; Figure 7).7

8

5 Discussion9

Mathematical models have played an important role in the decision-making process in the con-10

trol of FMD epidemics and its economic consequences (Garner and Lack, 1995; Ferguson et al.,11

2001; Keeling et al., 2001; Morris et al., 2001; Brentsen et al., 1992; Sanson and Morris et al.,12

1994; Nielen et al., 1996; Jalvingh et al., 1999; Bates et al., 2003). During the 2001 FMD epi-13

demic in Great Britain, different approaches were used including “moment closure” techniques14

(Ferguson et al., 2001) and stochastic models (Keeling et al., 2001; Morris et al., 2001). Here,15

we used a spatially explicit deterministic model that takes into account the distance between16

counties in the transmission process (Figure 2), farm density within counties (Table 1), and17

information on the timing of intervention strategies during the epidemic. Our model was cali-18

brated using data from the 2001 FMD epidemic in Uruguay and used to assess retrospectively19

the effects of the implementation of a mass vaccination programme while the epidemic was in20

progress. The model was not validated for predictive purposes. The goal here was to determine21

21



whether or not the use of spatially explicit information as a proxy for animal rellocation and1

socio-economic individual movement (i.e., milk routes, human traffic) was enough to capture2

retrospectively the observed patterns of FMD spread. Notwithstanding the crude modelling3

assumptions made here, the spatially explicit model was able to capture regional patterns of4

the 2001 Uruguayan FMD epidemic, a feat that was not possible with a spatially homogeneous5

model.6

7

Because observational epidemiology is a discipline that does not facilitate the implemen-8

tation of controlled experimental designs, model evaluation is constrained to use simulated9

scenarios. Data obtained from the 2001 Uruguayan FMD epidemic were retrospectively used10

to assess the spatial model here described. However, case reporting of actual epidemics is likely11

to include errors not limited to delayed reporting and under-reporting. Therefore, this study12

should not be construed as an assessment of the epidemic that took place in Uruguay in 2001,13

but as a model evaluation that uses hypothetical geo-referenced and temporal epidemic data14

(although a very realistic dataset). That is, this model should be considered within the frame15

of the data here reported.16

17

In spite of the fact that the spatial scenario chosen to compare the non-spatial (homogeneous18

mixing-based theory) and the spatial models was a region that most closely would resemble a19

homogeneous mix of susceptible farms (because it was where the epidemic began and where20

the highest proportion of cases was reported throughout the epidemic), significant differences21

were noticed between models. That supports the view that even in the most homogeneous22

22



scenario, spatial differences occur, which make non-spatial models unlikely to capture the local1

complexities of epidemic processes. Mathematically, this can be expressed as differences due to2

non-random/non-uniform data distributions which is equal to say that spatial autocorrelation3

(disease clusters) were present (Moran, 1950).4

5

Spread in our spatially explicit model is the result of two forces: a strong local internal6

force of infection linked to the global community via a weak long-distance force of infections.7

The fact that the force of infection fades with distance ultimately suggest that epidemics can8

only be supported if the light “fires” ignited by long distance dispersal are re-ignited by strong9

local contact dynamics. Under this scenario, the local reproductive number for spatial models10

must be very high for epidemics to occur (Holmes, 1997). Hence, it is not surprising to see11

high estimates for the values of the internal (within a county) reproductive numbers. The lower12

estimates for the reproductive number across counties (external) following movement restric-13

tions show that, once movement restrictions had been put in place, the transmission process14

was mostly driven by within-county spread. That is, long-distance (at the level of counties)15

transmission became a rare event. These results are congruent with the rolling over of the intrin-16

sic growth rate r (Figure 4a) and the parameter estimate 1/q = 0.97 (km) which characterizes17

the average transmission range of the disease under the assumption of non-spatial heterogeneity.18

19

The spatial epidemic model captured the observed two-peak outbreak in the transmission20

dynamics (Figure 6b). The two peak dynamics arise from long distance sparks of infection,21

which can trigger secondary outbreaks (Keeling et al., 2001). Secondary “peaks” of infection22

23



can be of higher intensity, as can be observed from the epidemic (Figure 6b).1

2

Further differences were noticed between models, when the daily number of infected farms3

was considered. A double epidemic peak was indicated by the spatial model, which seemed4

to contradict the expectation for epidemic decline after epidemic day 10th (shown in Fig 2),5

and the rapid decrease of Rinternal (Fig X). Because nation-wide vaccination was implemented6

since or after epidemic day 17th (European Commission DG (SANCO) report 3342/2001), it7

is not unconceivable that the movement of vaccinators and vehicles across farms could have8

become a vector for epidemic dispersal between infected (but not clinical) cases and susceptible9

animals, which could result in a second, although brief, epidemic peak.10

11

Because of the good-fit observed between the spatial model and observed data, which dif-12

fered significantly with that of the non-spatial model, it is concluded that even in scenarios13

where conditions might most closely resemble those of homogeneous mixing, spatial models are14

still more appropriate. Local spatial discontinuities may significantly differ from the assump-15

tions required by homogeneous mixing models.16

17

The epidemic data (2001 FMD epidemic in Uruguay) suffered from low reporting rates on18

weekends. In order to smooth out data inconsistencies, the parameter estimation procedure19

used was based on the cumulative epidemic curve. The error structure reflects the greater20

variability observed in the middle course of the epidemic and the lower variability observed at21

the beginning and towards the end of the epidemic, that is, the assumption that errors in the22

24



data were independent was not made.1

2

The lack of farm-level data, the spatial location of counties was used instead as a first order3

approximation in modelling the transmission dynamics of FMD resulted in the overestimation4

of internal reproductive numbers. The level of local and long-distance farm “interactions” natu-5

rally depend on farm “type.” Data on farm heterogeneity (dairy, beef, etc) or farm composition6

(cattle, pigs, sheep) (Bates et al., 2001; Sutmoller et al., 2003) were not explicitly incorporated7

here but could be considered should appropriate data were to become available. Generally8

speaking, the estimates of the transmission rates (as previously defined) should be interpreted9

as mean transmission rates characteristic of the 2001 FMD epidemic in Uruguay. The explicit10

nature of the data and model assumptions suggest that these estimates are unlikely to be of11

value elsewhere. However, the modelling and estimation approach should be of use in similar12

situations.13

14

The possibility of underreporting was not incorporated either. Underreporting comes from15

many sources such as from the farmer’s not reporting clinically ill cases or from the fact that16

some animals, although infected, do not show clinical symptoms (“silent cases”). Once again,17

model results can easily overestimate the impact of interventions.18

19

As in most models for FMD, our model does not include road density considerations but20

it could if such data were to become available. Road density could play a significant role in21

capturing higher resolution epidemic patterns within states or counties, a factor that is with22
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a great degree of county heterogeneity. During the epidemic in Uruguay, human traffic was1

not interrupted. Milk trucks continued to visit dairy farms and collect milk throughout the2

epidemic. The role played by these factors cannot be diminished.3

4

There is little data on vaccine and quality or effectiveness of vaccination programme. Limi-5

tations include but are not limited to vaccination coverage (not all the susceptible animals are6

vaccinated for several reasons) and field vaccine efficacy. In the case of Uruguay, it is known7

that young calves (< 3 month-olds) were not vaccinated during the epidemic. Pigs and sheep8

were not vaccinated either (Reports of the European Commission). Furthermore, the vaccine9

used was specific to the virus observed during the FMD epidemic (virus type A24 (reports of the10

European Commission)) but no spatial/temporal data were available regarding whether or not11

vaccinal antibodies reached protective titers. In addition, age, health, and stress of the livestock12

influence an animal’s response to and the effectiveness of the vaccine (the “responders” index)13

and some animals who exhibit an immune response do not reach protective antibody levels. In14

other words, plenty of data were not available and consequently, the model had to be developed15

using available data. It is again surprising to see that the use of space as a proxy for various16

sociological and epidemiological factors was enough to capture critical differences in dynamic17

patterns of spread.18

It is suggested that models spatially explicit are particularly appropriate when interventions19

are planned or evaluated. Factors usually not accounted by non-spatial models (especially those20

involving vaccinations) include: a) vaccination efficacy, b) intervention spatial coverage, and21

c) percentage of animals and time required to synthesize specific antibody titers with protec-22
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tive levels (Fig Y). Vaccine efficacy is influenced by several factors (i.e., homology, safety and1

potency testing) (Sevilla et al., 1996, van Boven et al., 2000; Leforban, 1999; Garland, 1999).2

Vaccination programs require not only to achieve certain percentage of vaccinated animals (cov-3

erage) but also that that level be evenly achieved, since pockets of unvaccinated animals within4

vaccinated farms may allow the virus to re-invade (Keeling, 1999). Yet, we have failed to find5

literature reporting data on the spatial distribution of vaccination coverage. Antibody titer6

decay refers to post-vaccination animal immune response, which decreases 7% or more after 4-67

weeks post-vaccination (Armstrong and Mathew, 2001; Woolhouse et al., 1996). Antibody titer8

decay is also influenced by the age of the host. Age plays a minor effect in disease control of9

animals of relatively short life expectancy (thereby facilitating the success of vaccination as a10

disease control measure, as in foxes rabies), but a major role in control of diseases of animals of11

greater mean age, such as cattle (Woolhouse et al., 1997). Therefore, the intervention outcome12

may be influenced by multiple factors that are distributed over space in a non-random/non-13

uniform fashion.14

15

It is concluded that major differences in outcomes may be expected when spatially explicit16

data are not considered. Absence of such data might explain the poor fit shown by the non-17

spatial model. In order to achieve greater precision, it is recommended the use of spatial data18

at the lowest possible scale (i.e., farm-level data, as opposed to county-level data).19
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6 Conclusions1

• FMD epidemic models incorporating spatial structures can capture regional patterns of2

spread.3

• Long-distance sparks of infection reaching areas of susceptible farms can generate multiple4

peaks in the global infection rates. In contrast to spatially structured models, spatially5

homogeneous models are unable to reproduce such patterns of infection.6

• There was a rapid drop in the external reproductive number to less than one after move-7

ment restrictions were enforced. Following these restrictions, transmissions were localized8

and there was a very low probability for long-range transmission events. Hence, ensuring9

that movement restrictions are strictly enforced is crucial in any contingency plan against10

FMD.11

• Given our model assumptions, mass vaccination implemented along with a policy of move-12

ment restrictions is an effective means of control and significantly reduces the final epi-13

demic size.14

• The 2001 FMD Uruguayan epidemic data and analysis can be used for comparison when15

assessing other control measures, such as culling policies and higher potency vaccines,16

implemented alone or in combination with other interventions.17
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Figure 1: (a) Daily and (b) cumulative number of reported infected farms during the 2001 Foot

and Mouth Disease epidemic in Uruguay. The epidemic reached its maximum of 66 outbreaks

on day 33 (25 May 2001). By day 79 (10 July 2001) 1762 outbreaks had been reported. Data

have been obtained from public records of the Uruguayan Ministry of Livestock, Agriculture,

and Fisheries (MGAP), the Pan-american Health Organization, and the World Organization

for Animal Health (OIE). The periodic dips in the data are due to low reporting rates on the

weekends.
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Table 1: Distribution of farm density and outbreaks of the 2001 foot-and-mouth disease epidemic in Uruguay over 79

epidemic days.

Region I Region II Region III

State Counties Nj Inf. Tot. State Counties Nj Inf. Tot. State Counties Nj Inf. Tot.

Soriano 12 140 463 1682 Paysandu 13 121 64 1567 Artigas 12 118 34 1421

Colonia 18 151 362 2724 Salto 16 111 56 1783 Rivera 10 206 14 2064

Rio Negro 12 77 178 925 S. Jose 10 243 68 2430 C. Largo 16 196 26 2744

Flores 9 91 62 816 Lavalleja 14 235 15 3296

Florida 16 152 109 2436 Rocha 12 190 12 2284

Tacuarembo 16 152 111 2427 T. y Tres 11 163 59 1797

Durazno 15 136 92 2043 Maldonado 13 136 12 1773

Canelones 23 141 25 3800

Counties, number of counties per state; Nj , mean number of farms per county; Inf., number of outbreaks per state; Tot.,

total number of farms per state.
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Table 2: Parameter definitions and estimates obtained from least-squares fitting of nonspatial

epidemic model (10) to the cumulative number of infected farms over time (days) in Region I

(Figure 5a). All the parameters have units 1/ days.

Params. Definition Estim. SD

β̂0 Average transmission rate between farms before mov. restrictions 0.77 0.04

β̂ Average transmission rate between farms after mov. restrictions 0.49 0.08

α̂0 Rate of detection of infected farms before mov. restrictions 0.16 0.07

α̂ Rate of detection of infected farms after mov. restrictions 0.14 0.02

k̂ Rate of progression from latent to infectious state 0.26 0.07

ν̂ Vaccination rate of susceptible farms 0.16 0.04

µ̂ Rate at which vaccinated farms achieve protective levels 0.31 0.05
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Table 3: Parameter definitions and estimates obtained from least-squares fitting of spatial

epidemic model (3) to the cumulative number of infected farms over time (days) in Region I.

All the parameters have units 1/ days except for q whose units are 1/Km. ∗ Small values of

q lead to widespread influence, while large values support local spread. Great mobility and

frequent interactions among farms would lead to small values of q.

Params. Definition Estim. SD

β0 Average transmission rate within counties before mov. restrictions 0.33 0.13

β Average transmission rate within counties after mov. restrictions 0.10 0.03

α0 Rate of detection of infected farms before mov. restrictions 0.14 0.02

α Rate of detection of infected farms after mov. restrictions 0.14 0.02

k Rate of progression from latent to infectious state 0.28 0.05

q∗ Positive constant quantifying the extent of local spread 1.03 0.10

ν Vaccination rate of susceptible farms 0.25 0.09

µ Rate at which vaccinated farms achieve protective levels 0.14 0.03
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Figure 2: (a) Map of Uruguay with department (in color: 1) Artigas, 2) Salto, 3) Rivera,

4) Paysandu, 5) Tacuarembo, 6) Cerro Largo, 7) Rio Negro, 8) Durazno, 9) Treinta y Tres,

10) Soriano, 11) Flores, 12) Florida, 13) Lavalleja, 14) Rocha, 15) Colonia, 16) San Jose, 17)

Canelones, 18) Maldonado) and county divisions and (b) distribution of intercounty (Euclidean)

distances which were obtained using a geographic information system (GIS). The centroide of

each county was used to compute euclidean distances.
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Figure 3: Schematic representation of the state progression for farms in a given county used to

model the epidemic, as explained in the text.

Figure 4: (a) The initial intrinsic growth rate r for Region I, II and III for the epidemic over

79 epidemic days. (b) Region I, II and III comprise 3, 7 and 8 Uruguayan states, respectively

(see Table 1). The circle (Region I) denotes the site where the index case was reported.
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Figure 5: The cumulative number of reported infected farms in Region I (Figure 4), where the

epidemic started (23 April 2001) and most outbreaks occurred. Circles are the data, and the

solid line is the best-fit solution of (a) non-spatial model (10) and (b) spatial model (3) to the

data by least-squares fitting, as explained in the text.
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Figure 6: The daily number of reported infected farms in Region I (Figure 4), where the

epidemic started (23 April 2001) and most outbreaks occurred. Circles are the data, and the

solid line is the best-fit solution of (a) nonspatial model (10) and (b) spatial model (3) to the

data by least-squares fitting, as explained in the text.
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Figure 7: (a) The daily and (b) cumulative number of reported infected farms in Region I

(Figure 4), where the outbreak started (23 April 2001) and most outbreaks occurred. Circles

are the data, and the solid line is the best-fit solution of deterministic model equations (3) to

the data by least-squares fitting (parameter estimates are given in Table 3). Two scenarios are

shown: (dash-dash) movement restrictions with a 3-day delay and (dash-dot) 3 days before the

actual date on which movement restrictions started.
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